• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Ученые Вышки ускоряют разработку беспроводных систем связи 5G и 6G с помощью ИИ-технологий

Ученые Вышки ускоряют разработку беспроводных систем связи 5G и 6G с помощью ИИ-технологий

© iStock

В Центре искусственного интеллекта НИУ ВШЭ разработали программное обеспечение для моделирования радиоканала в беспроводной связи 5G и 6G, основанное на использовании трассировки лучей и машинного обучения. Программы позволяют узнать, как радиоволны распространяются между передатчиком и приемником, а также могут преобразовывать данные трассировки лучей в формат последовательности кадров, конфигурировать и обучать нейросеть на их основе с последующим сохранением. 

В рамках проекта «Интеллектуальные методы доставки данных в перспективных сетях 2030» в Центре искусственного интеллекта НИУ ВШЭ разработали программу для сбора и обработки данных моделирования трассировки лучей, которая позволяет узнать, как радиоволны распространяются между передатчиком (например, вышкой сотовой связи) и приемником (мобильным устройством). Также ученые создали программу для обучения нейросети и ее применения для интерполяции данных моделирования трассировки лучей, чтобы преобразовывать данные трассировки лучей в формат последовательности кадров, конфигурировать и обучать нейросеть на их основе с последующим сохранением.

Евгений Кучерявый,
руководитель проекта «Интеллектуальные методы доставки данных в перспективных сетях 2030»

«Программа использует метод моделирования распространения радиоволн, который позволяет отслеживать все возможные пути распространения радиосигнала от передатчика к приемнику. Она анализирует данные о качестве сигнала и других параметрах, чтобы показать, как они изменяются в разных условиях, например при передвижении приемника. Таким образом, мы можем увидеть, как меняется качество связи, когда мы, например, перемещаемся на автомобиле или поезде».

Новый метод моделирования радиоканала в беспроводной связи 5G и 6G, который разрабатывает Центр ИИ, основан на использовании трассировки лучей и машинного обучения. Он позволяет анализировать распространение сигналов и радиоволн через беспроводное пространство, учитывая различные факторы, такие как отражение от стен и препятствий. Это улучшит качество связи между устройствами, поможет предсказать зоны покрытия сети и оптимизировать расположение антенн для эффективной работы связи.

Машинное обучение значительно улучшает развитие сетей 5G и 6G, ускоряя и оптимизируя ключевые процессы. Например, анализируя данные о загрузке и равномерно распределяя трафик между различными узлами, можно обеспечивать высокую производительность сети. Изучая информацию о перемещении пользователей, алгоритмы предсказывают их будущее местоположение и совершенствуют процессы переключения между базовыми станциями. Это помогает обеспечить непрерывную связь и минимизировать задержки. Кроме того, машинное обучение может управлять лучом передачи данных, определять его оптимальное направление для каждого пользователя или устройства, что позволяет оптимизировать качество сигнала и увеличить его пропускную способность.

Владислав Просвиров,
стажер-исследователь проекта «Интеллектуальные методы доставки данных в перспективных сетях 2030»

«В рамках проекта мы разрабатываем метод, который поможет увеличить скорость моделирования радиоканала с помощью трассировки лучей. Для достижения этой цели мы используем машинное обучение. Такое моделирование позволяет быстро проводить оценку различных беспроводных систем без необходимости реального развертывания приемников и передатчиков. Наша разработка может быть применима как в прикладных исследованиях различных беспроводных систем 5G и 6G, так и операторами связи».

Вам также может быть интересно:

Эксперты НИУ ВШЭ исследовали, как ведется подготовка специалистов в области ИИ

Институт статистических исследований и экономики знаний НИУ ВШЭ представил доклад, подготовленный на основе результатов специализированного обследования образовательных организаций высшего образования.  Целью впервые проведенной работы стало выявление масштабов и условий обучения технологиям искусственного интеллекта в рамках образовательных программ высшего образования и дополнительных профессиональных программ в вузовском секторе.

«Нам удалось провести настоящий хакатон, когда нет заранее понятного пайплайна, как получить решение»

С 13 по 20 октября в НИУ ВШЭ прошел хакатон “HSE AI Assistant Hack: Python”, организованный факультетом компьютерных наук и Центром искусственного интеллекта ВШЭ. За призовые места боролись 89 студенческих команд из ведущих вузов страны.

Ученые Вышки представили разработки, связанные с применением ИИ в медицине

Искусственный интеллект не заменит врача, но может стать ему отличным помощником. При этом здравоохранение нуждается в высокотехнологичных продуктах, которые способны быстро анализировать и контролировать состояние пациентов. Ученые Вышки применили ИИ для предоперационного планирования и постоперационной оценки результатов в спинальной хирургии и разработали автоматическую интеллектуальную систему для оценки биомеханики рук и ног.

Ученые Вышки представили проекты по этической экспертизе в сфере ИИ

Технологии искусственного интеллекта уже стали неотъемлемой частью повседневной жизни и активно применяются в различных отраслях экономики. Однако этические вопросы использования ИИ все еще требуют обсуждения и осмысления. Сегодня в России с участием ученых НИУ ВШЭ ведется работа над несколькими отраслевыми приложениями к национальному Кодексу этики в сфере ИИ, в которых будут конкретные рекомендации в помощь каждому, кто нуждается в понимании и анализе рисков и угроз со стороны ИИ.

Три команды ВШЭ стали победителями на всероссийском хакатоне «Цифровой прорыв»

В конце сентября в Москве состоялся всероссийский хакатон «Цифровой прорыв. Сезон: Искусственный интеллект». На соревнование собрались 314 команд и 1616 человек со всей страны. Они состязались в решении задач от партнеров хакатона — государственных организаций и компаний: «РЖД», «Росатома», Центра робототехники Сбера, «Сколтеха» и многих других. Три команды студентов факультета компьютерных наук НИУ ВШЭ приняли участие в хакатоне и выиграли в двух кейсах.

С помощью ученых НИУ ВШЭ и Сбера преподаватели смогут повысить качество онлайн-обучения

Ученые Центра искусственного интеллекта НИУ ВШЭ и исследователи Лаборатории искусственного интеллекта Сбербанка научились определять вовлеченность участников онлайн-мероприятий. Метод, основанный на анализе видео лица, помогает выявить, насколько слушатель заинтересован в материале. Научная статья о проведенном исследовании опубликована в рамках Международной конференции по искусственному интеллекту в образовании — AIED 2024.

Вышка расширит сотрудничество с Агентством стратегических инициатив для разработки передовых решений

В Высшей школе экономики прошел День знакомства университета и Агентства стратегических инициатив (АСИ). Стороны представили свои исследовательские и аналитические проекты и наметили направления совместной работы. Задача ученых и экспертов — повысить эффективность и ускорить внедрение в практику прорывных научных разработок по широкому спектру направлений — от экономических прогнозов до нейропротезирования.

Исследователи НИУ ВШЭ и Сбера добавят эмоций искусственному интеллекту

Ученые Центра искусственного интеллекта НИУ ВШЭ и исследователи Лаборатории искусственного интеллекта Сбербанка разработали специальную систему, которая с помощью больших языковых моделей сделает искусственный интеллект (AI) более эмоциональным при общении с человеком. Синтезом AI-эмоций займутся набирающие популярность мультиагентные модели. Научная работа о проведенном исследовании опубликована в рамках Международной совместной конференции по искусственному интеллекту — IJCAI 2024.

Вышка и «Яндекс» научат преподавателей российских вузов ИИ-грамотности

«Яндекс Образование» и факультет компьютерных наук НИУ ВШЭ (ФКН ВШЭ) создали совместный онлайн-гайд, посвященный промптингу — формулированию запросов к нейросетям. Он доступен всем на платформе «Яндекса» и в первую очередь будет полезен преподавателям, которые никогда не пользовались GPT в работе или только начинают применять ИИ-инструменты. Как правильно создать запрос к нейросети? Как грамотно использовать GPT-модели в образовательных целях? Какие задачи преподаватели могут решать с помощью искусственного интеллекта? Гайд отвечает на эти и другие вопросы по работе с нейросетями.

«Оставаться конкурентным специалистом без применения нейросетей может стать нелегкой задачей»

Цифровые технологии прочно вошли в нашу жизнь и продолжают стремительно развиваться. Неудивительно, что все чаще возникает вопрос, сможет ли однажды искусственный интеллект полностью заменить специалистов. О перспективах лингвистики в эпоху нейросетей рассуждает Даниил Осипов, кандидат филологических наук, доцент Школы иностранных языков НИУ ВШЭ.