• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Нейросеть научили предсказывать кризисы на фондовом рынке России

Нейросеть научили предсказывать кризисы на фондовом рынке России

© iStock

Экономисты из ВШЭ разработали нейросетевую модель, способную за сутки до события с точностью более 83% предупредить о приближении краткосрочного фондового кризиса. Модель работает даже на сложных, несбалансированных данных и учитывает не только экономические показатели, но и настроение инвесторов. Работа сотрудников Центра финансовых исследований и анализа данных ФЭН ВШЭ Тамары Тепловой, Максима Файзулина и Алексея Куркина опубликована в журнале Socio-Economic Planning Sciences.

Как предсказать шторм на фондовом рынке? Знать ответ на этот вопрос хотят финансовые аналитики и инвесторы по всему миру. Работа сотрудников Центра финансовых исследований и анализа данных ФЭН ВШЭ Тамары Тепловой, Максима Файзулина и Алексея Куркина предлагает оригинальный подход к прогнозированию краткосрочных кризисов на отечественном рынке акций. Созданная ими гибридная модель глубокого обучения, сочетающая три архитектуры: Temporal Convolutional Network (TCN), Long Short-Term Memory (LSTM) и Attention (механизм внимания инвесторов), — это первая попытка применить столь сложную структуру к российским биржевым данным.

Авторы проанализировали данные с 2014 по 2024 год, включающие рыночные и макроэкономические показатели (в первую очередь индекс Мосбиржи IMOEX), а также индикаторы настроений инвесторов. Чтобы спрогнозировать вероятность наступления кризиса на ближайшие 1–5 торговых дней, ученым пришлось решить несколько методологических проблем. Во-первых, кризисы на рынке происходят редко (до четверти всех событий), что делает обучающую выборку несбалансированной: есть риск, что модель научится игнорировать редкие сигналы. Во-вторых, поведение инвесторов подчиняется не только объективным экономическим факторам, но и субъективным настроениям, которые трудно формализовать. В ответ на это исследователи разработали составные индексы внутреннего и внешнего инвестиционного настроения, используя метод главных компонент. Эти индексы дополняют традиционные макроэкономические и рыночные переменные, позволяя уловить скрытые эмоциональные сигналы участников торгов на более дальних временных горизонтах прогнозирования.

Тамара Теплова

«Мы представили гибридную модель TCN — LSTM — Attention, сочетающую методы глубинного обучения и механизм внимания. Модель эффективно обрабатывает неравномерные данные и достигает точности 78,70% при прогнозе кризисных событий в день наблюдения и 78,85% на следующий торговый день. Использование месячной повторной тренировки и адаптивных временных окон позволило довести точность до 83,87%. Ключевыми факторами, влияющими на предсказания, оказались биржевые индикаторы (аналог технического анализа), капитализация компаний — эмитентов акций и рыночные курсы валют», — сообщила профессор факультета экономических наук ВШЭ Тамара Теплова.

Разработанная система может стать важным инструментом в арсенале инвесторов, финансовых аналитиков и регуляторов. Она позволяет не просто ретроспективно анализировать кризисные периоды, но заранее и с высокой достоверностью выявлять угрозы на горизонте 1–2 дней. В сочетании с регулярной адаптацией к новым данным такая система может лечь в основу динамической архитектуры мониторинга рисков, адаптированной под специфику российского рынка.

«Работа имеет высокую практическую значимость для национального финансового сектора: она предлагает действенные инструменты для своевременного выявления рыночных потрясений, что особенно актуально для нестабильной макроэкономической среды», — подчеркивает Тамара Теплова.

Исследование выполнено при поддержке Программы фундаментальных исследований НИУ ВШЭ в рамках проекта «Центры превосходства».

Вам также может быть интересно:

В НИУ ВШЭ пройдет II конгресс «Генетика и сердце»

Высшая школа экономики, Национальная исследовательская лига кардиологической генетики (НИЛКГ) и Центральная государственная медицинская академия (ЦГМА) Управления делами Президента РФ организуют II Конгресс с международным участием «Генетика и сердце». Мероприятие состоится 7–8 февраля 2026 года в Центре культур НИУ ВШЭ.

Ученые ВШЭ выяснили, как сила авторитета формирует доверие

Исследователи Института когнитивных нейронаук НИУ ВШЭ выяснили, как мозг реагирует на аудиодипфейки — реалистичные поддельные записи речи, созданные с помощью ИИ. Выяснилось, что люди склонны доверять мнению авторитетного спикера даже в тех случаях, когда новые утверждения противоречат его прежней позиции. Это работает и в ситуациях, когда утверждение не согласуется с собственным мнением слушающего. Исследование опубликовано в журнале NeuroImage.

МИЭМ ВШЭ и Инновационный центр «Альфачип» заключили соглашение о сотрудничестве

Среди основных задач — совместные проекты в области микроэлектроники, участие специалистов компании в сопровождении научно-исследовательской деятельности студентов и аспирантов. Также планируется подготовка совместных научных публикаций, организация производственной практики и стажировок студентов, повышение квалификации специалистов компании.

Математик из НИУ ВШЭ в Нижнем Новгороде нашел способ решить уравнение, нерешаемое с XIX века

Ученый из НИУ ВШЭ в Нижнем Новгороде и ИППИ РАН Иван Ремизов совершил концептуальный прорыв в теории дифференциальных уравнений. Ему удалось вывести универсальную формулу для решения задач, которые более 190 лет считались нерешаемыми аналитическим путем. Полученный результат радикально меняет картину мира в одной из старейших областей математики, важной для фундаментальной физики и экономики. Результаты работы опубликованы во Владикавказском математическом журнале.

НИУ ВШЭ и ГК InfoWatch подписали соглашение о сотрудничестве

Соглашение ознаменует новый этап сотрудничества между НИУ ВШЭ и ГК InfoWatch, который направлен на развитие образовательных программ и укрепление практико-ориентированного подхода в подготовке кадров для цифровой экономики. Стороны договорились совместно разрабатывать и проводить экспертизу учебных программ. Кроме того, эксперты ГК InfoWatch будут вести преподавательскую работу в рамках обучения студентов IT- и ИБ-направлений Высшей школы экономики.

Ученые ВШЭ разработали DeepGQ — Google Maps для G-квадруплексов

Исследователи из Центра искусственного интеллекта ФКН НИУ ВШЭ разработали ИИ-модель, которая открывает новые возможности для диагностики и лечения тяжелых заболеваний, включая рак мозга и нейродегенеративные нарушения. Ученые применили искусственный интеллект для изучения G-квадруплексов — структур, которые оказывают значительное влияние на работу наших клеток и развитие различных органов и тканей. Статья с результатами исследования опубликована в журнале Scientific Reports.

Ученые показали, что мнение сверстников равноценно мнению экспертов

Изменить пищевые привычки может не только авторитет врача, но и обычный разговор между друзьями. Исследователи ВШЭ показали, что советы сверстников снижать потребление сахара работают так же эффективно, как и призывы экспертов. Результаты исследования опубликованы в журнале  Frontiers in Nutrition.

Результаты исследования Вышки: молодежь стремится работать в крупных компаниях

Центр внутреннего мониторинга НИУ ВШЭ изучил, как российская молодежь выбирает первого работодателя и какие факторы влияют на карьерные решения. Главный вывод исследования: большинство обучающихся (57%) рассматривает первые шаги в карьере в крупных корпорациях, предпочитая работу в известных организациях.

Как мозг обрабатывает слово: исследователи НИУ ВШЭ сравнили читательские маршруты взрослых и детей

Исследователи Центра языка и мозга ВШЭ с помощью магнитоэнцефалографии изучили, как мозг взрослых и детей реагирует на слова при чтении. Они показали, что у детей мозг дольше обрабатывает даже часто употребляющиеся в речи слова, а слова, которые встречаются редко, и псевдослова обрабатывает одинаково — медленно и по частям. С возрастом система перестраивается: высокочастотные слова переходят на быстрый маршрут, а вот новые сочетания букв по-прежнему анализируются медленно. Исследование опубликовано в журнале Psychophysiology.

Зеленый энергопереход: от мифов к реалиям

В 2025 году в Вышке стартовал стратегический технологический проект (СТП) «Национальный центр социально-экономического и научно-технологического прогнозирования». Институт экономики природных ресурсов и изменения климата ВШЭ формирует прогнозы развития мировой и российской экономики и энергетики с учетом фактора «зеленой трансформации». Игорь Макаров, директор института и руководитель департамент мировой экономики, рассказал о глобальном ландшафте климатического регулирования, «черных лебедях» и роли ИИ в борьбе с изменением климата.